

Realização

ESTUDO DE CASO DO PROGRAMA DE MANUTENÇÃO PREDITIVA PROMOVIDO PELA AGÊNCIA REGULADORA ARES PCJ

Aline Aparecida Antunes Cornetti; Fábio de Melo Sotelo.

Realização

Introdução

• Mirshawka (1991), classifica a manutenção preditiva como uma manutenção inteligente que só interfere quando é necessário.

Realização

Introdução

- A manutenção preditiva é a primeira grande quebra de paradigma na manutenção.
- Avanço tecnológico → implementação de sistemas de monitoramento e diagnóstico capazes de identificar as condições e o desempenho real dos equipamentos → permite avaliação confiável das instalações e sistemas operacionais sem a necessidade de parada da produção.
- Informações extraídas → falha ou indicativo de baixo desempenho → correção através de uma manutenção corretiva planejada.
- Pode-se então verificar que em termos de disponibilidade das máquinas, a manutenção preditiva estabelece uma vantagem, pois as verificações são efetuadas com o equipamento produzindo (KARDEC; NASCIF, 2009).

Realização

Objetivo

Estudo de caso de programa de monitoramento de manutenção preditiva através de análises de vibração em motobombas e termografia em painéis elétricos e seus componentes promovido pela ARES PCJ para seus municípios associados visando identificar defeitos recorrentes, gravidade e possíveis prejuízos que poderiam ser causados por estes defeitos.

Realização

Material e métodos

Manutenção preditiva:

- Análise de vibração de conjuntos motobombas
- Análise de termografia de painéis e sistemas elétricos

Realização

Material e métodos

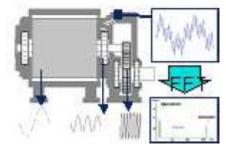
Análise de vibração:

- Equipamento: Analisador de Vibrações SDAV
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10082:2021 - Ensaios não destrutivos - Análise de vibrações - Avaliação da vibração mecânica de máquinas com velocidades de operação: Referências. Rio de Janeiro. 2021.

Realização:

Material e métodos

CAUSAS DA VIBRAÇÃO


- A vibração ocorre por causa dos efeitos dinâmicos de tolerâncias de fabricação, folgas, contatos, atrito entre as peças de uma máquina e, ainda, devido a forças desequilibradas de componentes rotativos e de movimentos alternados.
- É comum acontecer que vibrações insignificantes excitem as frequências naturais de outras peças de estrutura, fazendo com que sejam ampliadas, transformando-se em vibrações e ruídos.

VANTAGENS DA ANÁLISE DE VIBRAÇÃO

- Redução dos Custos de Manutenção
- Redução de falhas nas máquinas
- Redução de estoque e sobressalentes
- Redução do tempo de parada das máquinas
- Aumento da vida útil das máquinas

DEFEITOS DETECTADOS COM A ANÁLISE DE VIBRAÇÃO

- Desbalanceamento em rotores e acoplamentos
- Desalinhamento em acoplamentos, polias, engrenagens, etc.
- Folgas em elementos de máguinas
- Falhas na Lubrificação em rolamentos e mancais
- Defeitos em rolamentos (pista interna, externa, gaiola...)
- Defeitos em engrenagens (redutores de velocidade)
- Defeitos elétricos (motores elétricos)

Realização:

Material e métodos

Realização

Material e métodos

Análise de termografia:

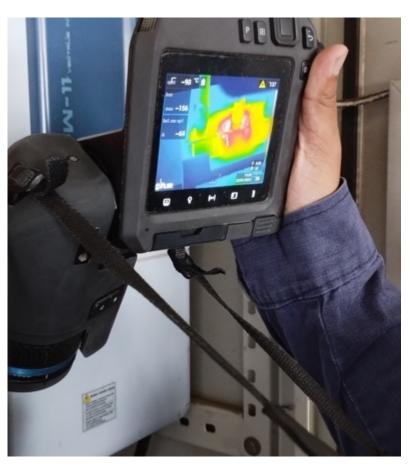
- Equipamento: Termovisor Flir Systems modelo T530
- Software para análise: FlirTools
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 16818:2020 - Norma para termografia: Referências. Rio de Janeiro. 2020.

Realização:

Material e métodos

O uso dessa tecnologia de monitoramento reduz os custos de manutenção das instalações, aumenta a disponibilidade dos equipamentos e melhora o desempenho dos processos produtivos. Os benefícios da Inspeção Infravermelha são:

- Identificar defeitos ou anomalias antes de ocorrer uma falha do sistema produtivo.
- Aumentar a segurança e confiabilidade dos sistemas.
- Diminuir a frequência e duração das intervenções conetivas emergenciais.
- Aumentar a eficiência e eficácia da manutenção e reduzir os custos associados.
- Reduzir os estoques em almoxarifado de peças sobressalentes.
- Aumentar a vida útil dos equipamentos e instalações.
- Reduzir custos operacionais.
- Aumentar a qualidade do produto ou serviço fornecido.
- Reduzir os riscos de incêndio devido a defeito em equipamentos ou instalações.


Realização:

Associação Nacional dos Serviços Municipais de Saneamento

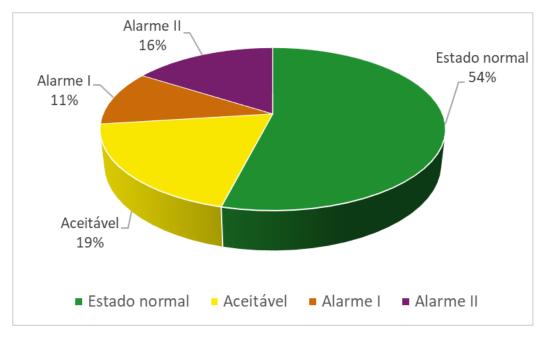
Material e métodos

Realização

Resultados e discussão

Monitoramento realizado no período de Maio/2023 a Fevereiro/2024:

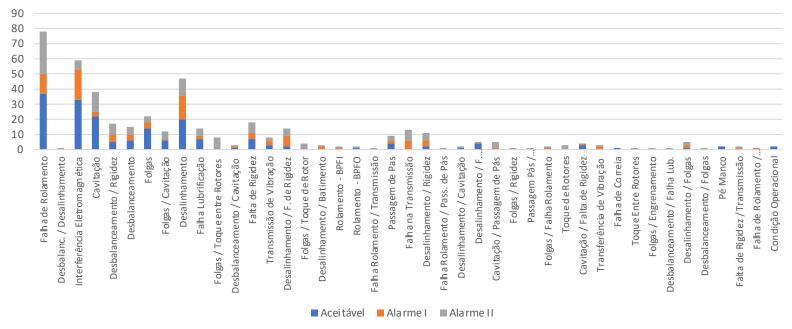
- 32 municípios;
- 961 análises técnicas para vibração;
- 1319 para termografia.



Realização:

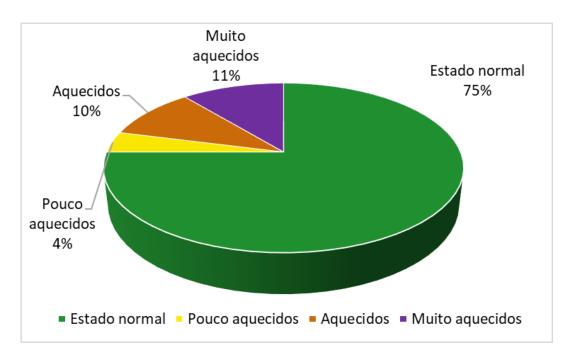
Resultados e discussão Análises de vibração em equipamentos motobombas:

- Bom estado, livre de falhas;
- Aceitável, início de falhas;
- Alarme I, falha residente;
- Alarme II, falha residente em estado avançado



Realização

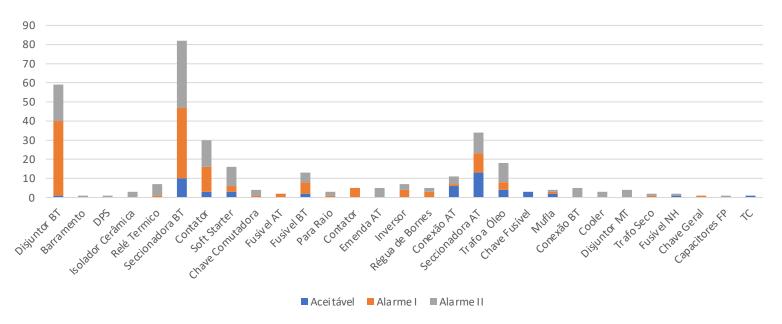
Resultados e discussão Análises de vibração em equipamentos motobombas:


Defeito mais recorrente: "Falha de rolamento", encontrado sozinho ou em conjunto com outro defeito. O defeito mais encontrado nos dois graus mais severos

Realização:

Resultados e discussão Análises de termografia em painéis elétricos:

- Normal, não apresenta aquecimento;
- Pouco Aquecido, nível um pouco acima do normal;
- Aquecido, nível acima do normal;
- Muito Aquecido, nível elevado



Realização

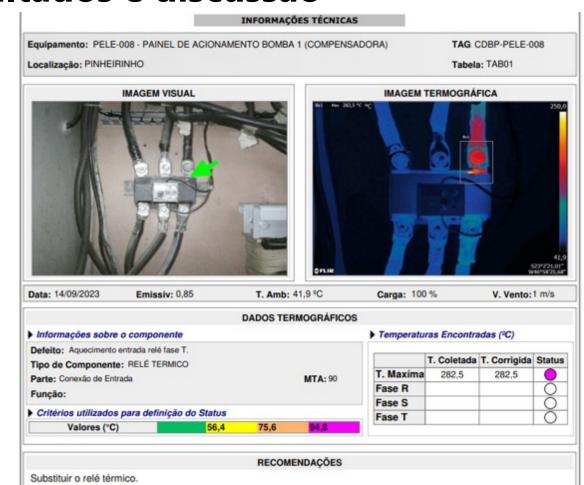
Resultados e discussão Análises de termografia em painéis elétricos:

Componente mais afetado encontrado: "Seccionadora Baixa Tensão", sendo também a que obteve mais casos nas severidades mais graves

Realização:

Associação Nacional dos Serviços Municipais de Saneamento

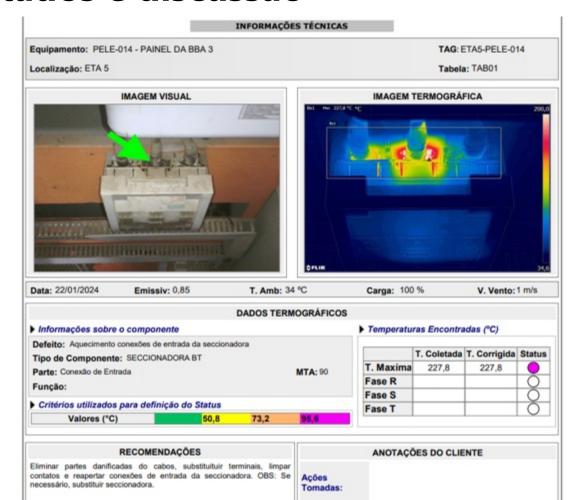
Resultados e discussão



Realização:

Municipais de Saneamento

Resultados e discussão



Realização:

Resultados e discussão

ARES PCJ

Realização:

Municipais de Saneamento

Resultados e discussão

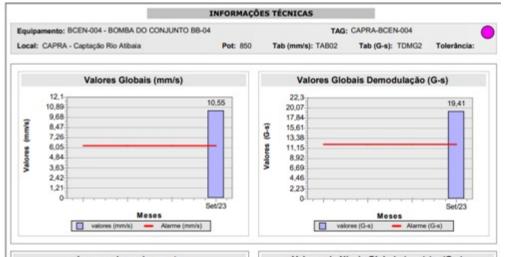
Pontos Col.	Mar/24
P1D (G-s)	6,33
P1H (mm/s)	79,43
P1V (mm/s)	23,11
P2A (mm/s)	4,34
P2D (G-s)	8,36
P2H (mm/s)	62,93
P2V (mm/s)	15,33

	Resumo de Ações	
Severidade/Data		21/03/2024
Defeitos Apresentados		Desbalanceamento / Rigidez
Recomendações		Realizar o balanceamento do conjunto rotativo. Reapertar parafusos de fixação e reparar danos na base / estrutura di bomba.

21/03/2024

Desbalanceamento / Rigidez

- Realizar o balanceamento do conjunto rotativo.
- Reapertar parafusos de fixação e reparar danos na base / estrutura da bomba.



Realização:

Municipais de Saneamento

Resultados e discussão

Pontos Col.	Set/23
P1D (G-s)	2,29
P1H (mm/s)	10,55
P1V (mm/s)	9,55
P2A (mm/s)	0,01
P2D (G-s)	19,41
P2H (mm/s)	4,33
P2V (mm/s)	7,41

	Resumo de Ações	100
Severidade/Data		13/09/2023
Defeitos Apresentados		Desalinhamento / Cavitação
Recomendações		Substituir elemento elástico e nealizar alinhamento a laser. Verfico posibilidade de ajustar pressões de suoção e recalique através de válvulas e utilizar sistema arbi-vdrice na suoção.

13/09/2023

Desalinhamento / Cavitação

- Substituir elemento elástico e realizar alinhamento a laser.
- 2 Verificar possibilidade de ajustar pressões de sucção e recalque através de válvulas e utilizar sistema anti-vórtice na sucção.

Realização:

Municipais de Saneamento

Resultados e discussão

Pontos Col.	Fev/24
P1D (G-s)	14,38
P1H (mm/s)	2,76
P1V (mm/s)	3,89
P2A (mm/s)	2,69
P2D (G-s)	33,1
P2H (mm/s)	2,05
P2V (mm/s)	7,3

	Resumo de Ações	1
Severidade/Data		19/02/2024
Defeitos Apresentados		Cavitação / Folgas
Recomendações		Realizar ajuste de folgas e tolerâncias no mancai LOA. C-Checar NPS-14 e demais dimensionamentos da bomba e das tubulações da mesma, reparar o que for necessário.

19/02/2024

Cavitação / Folgas

- Realizar ajuste de folgas e tolerâncias no mancal LOA.
- 2 Checar NPSH e demais dimensionamentos da bomba e das ubulações da mesma, reparar o que for necessário.

Realização

Resultados e discussão

• Lucro cessante: Prejuízo causado pela interrupção no processo de produção, ou seja, o quanto se deixou de ganhar com a suspensão temporária das atividades.

Realização

Resultados e discussão

Estudo de caso: Principal elevatória de água tratada do município possuía uma bomba em estado de Alarme II para "Falha de rolamento".

Cenários possíveis:

- Consequência mais leve: quebra do rolamento com uma parada prevista de 5 a 8 horas para correção e perda de faturamento de até R\$ 10.782,16.
- Consequência moderada: travamento do rolamento no eixo e parada de 1 a 2 semanas com perda do faturamento de até R\$ 452.850,64.
- <u>Consequência mais grave:</u> travamento do rolamento no eixo e danificação dos componentes internos da bomba, com parada de 3 a 4 semanas e perda de faturamento de até R\$ 905.701,28.

Realização:

Municipais de Saneamento

Resultados e discussão

Pontos Col.	Jun/23
M1D (G-s)	3,35
M1H (mm/s)	0,61
M1V (mm/s)	0,63
M2A (mm/s)	0,88
M2D (G-s)	15
M2H (mm/s)	1,02
M2V (mm/s)	1,1

Resumo de Ações	
Severidade/Data	14/06/2023
Defeitos Apresentados	Falha de Rolamento
Recomendações	Substituir os rolamentos do motor elétrico.
Ações Tomadas	
Nº OS	

Realização

Conclusões

O programa de manutenção preditiva promovido pela ARES PCJ contribuiu com seus associados evitando transtornos decorrentes de quebras de equipamentos e paradas longas para manutenção corretiva. Estes resultados também contribuíram com o planejamento de treinamentos oferecidos pela agência aos seus associados, focando nos defeitos mais recorrentes e de maior gravidade. Portanto, o programa de monitoramento preditivo visou ao melhor funcionamento do sistema, a preservação da prestação de serviços e o faturamento de seus prestadores.

Realização

Referências

MIRSHAWKA, V.; OLMEDO, N. L. Manutenção combate os custos da não-eficácia — A vez do Brasil. São Paulo: Makron Book, 1993.

KARDEC, Alan; NASCIF, Júlio. Manutenção – Função Estratégica. 3ª Edição: Rio de Janeiro: Qualitymark, 2009.

Realização

Agradecimentos

Agradecimentos à ARES-PCJ pela iniciativa, à empresa WFER e aos prestadores pela colaboração.

Realização:

OBRIGADO!

Aline Aparecida Antunes Cornetti

Contato: aline@arespcj.com.br

